易思范

下一个风口?BAT金融大数据体系拆解与价值挖掘

数字金融

2017年02月12日

  BAT在9个领域的布局,其实都是以大数据为核心串联在一起的。无论是征信、风控、消费金融、财富管理都或多或少运用到了大数据。

  1、大数据征信:在个人征信领域,目前是金融行业面临的最大问题。基于用户在互联网上的消费行为、社交行为、搜索行为等产生的海量数据,其价值并未被充分挖掘,个人征信在大数据的采集和信息挖掘上面仍有很大的想象空间。阿里的芝麻信用在其中算是最会玩的。芝麻信用几乎打通了用户的身份特质,行为偏好,人脉关系,信用历史,履约能力等各类信息。这恰恰是因为接入了电商、支付、社交等各类数据维度。

  2、大数据风控:大数据风控目前应该是前沿技术在金融领域的最成熟应用,相对于智能投顾、区块链等还在初期的金融科技应用,大数据风控目前已经在业界逐步普及。目前,美国基本上都用三大征信局的信息,最传统的评分基本上都是用FICO来做的。各家平台会尝试着用机器学习、神经网络等大数据处理方法。

  国内市场对于大数据风控的尝试还是比较积极。特别是大公司,可以将移动互联网的行为和贷款申请人联系到一起展开大数据风控。百度在风控层面上的进展还是比较突出,百度安全每天要处理数十亿网民搜索请求,保护数亿用户的终端安全,保护十万网站的安全,因此积累了大量的数据。

  一个很具体的案例就是,通过海量互联网行为数据,比如监测相关设备ID在哪些借贷网站上进行注册、同一设备是否下载多个借贷App,可以实时发现多头贷款的征兆,把风险控制到最低。

  3、大数据消费金融:消费金融对大数据的依赖是天然形成的。比如说消费贷、工薪贷、学生贷,这些消费型的金融贷款很依赖对用户的了解。所以必须对用户画像进行分析提炼,通过相关模型展开风险评估,并根据模型及数据从多维度为用户描绘一个立体化的画像。

  在大数据消费金融的领域中,腾讯和阿里的优势很大程度上是在渠道层面上的。正如前文所说的,阿里以电商-支付-信用为三级跳板,针对性很强支付宝接入消费金融产品之后会有较强的渠道作用。而在去年12月,腾讯的“微粒贷”已经接入到了微信支付当中。在消费金融的发展速度上,腾讯速度也不差。

  4、大数据财富管理:财富管理是近些年来在我国金融服务业中出现的一个新业务。主要为客户提供长期的投顾服务,实现客户资产的优化配置。这方面业务在传统金融机构中存在的比较多。不过因为技术能力不足,大数据财富管理在传统金融机构中相对弱势。

  财富管理在互联网公司的业务中也非常流行。蚂蚁金服一开始最为简单的财富管理方式就是余额宝,后来逐渐演化成经过大数据计算智能推荐给用户的各种标准化的“宝宝”理财产品。百度金融是依托“百度大脑”通过互联网人工智能、大数据分析等手段,精准识别和刻画用户,提供专业的“千人千面”的定制化财富管理服务。

  金融大数据的孪生兄弟金融云是地基,未来更具看点

  大数据和云计算永远都是相伴相随的一对孪生兄弟。金融大数据核心工作包括三方面,即获取数据、建立模型、模型在实践中优化、迭代。而对于金融大数据而言,金融云才是它的地基。

  打个不恰当的比方,前文中说大数据是煤矿,而金融云其实就是矿井。矿井的安全行、可靠性决定了挖煤的效率和结果。

  金融云把底层技术很多问题都解决了。大量金融模型都是金融云所引入的,如客户模型、产品模型、账务模型等。同时金融云关注金融本身的严谨性和周密性、安全性的考虑。

  2016年7月,“腾讯云+未来”峰会上,腾讯云和腾讯金融云都已成为最重点部署的业务。同年9月,百度世界大会金融科技分论坛上,百度金融云正式向业界开放。10月,阿里云栖大会上,阿里金融云负责人则是提出将会和生态合作伙伴、服务联盟为金融行业量身定制推出云增强服务。

  大数据必须要跑在云端,而金融大数据更需要和业内其他企业展开数据、支付、业务等一系列的合作。金融云对可用性、安全性的要求严格,比如说对一个高度可控可信的云安全体系而言,基础环境安全、风控与审计、数据安全三者缺一不可。而金融云在未来的竞争中将发挥越来越重要的作用。

+1

来源:虎嗅网 作者:吴俊宇

推荐文章